Gray Farm Stream Restoration Monitoring Report – Year Three

Contract # D05016-2 EEP Project # 92219

Iredell County, North Carolina

December 2008

Cataloging Unit – Catawba Basin 03050101

Prepared For:

1652 Mail Service Center Raleigh, NC 27699-1652

Table of Contents

I. Exe	cutive Summary / Project Abstract1
II. Pro	oject Background2
1.	Project Goals and Objectives2
2.	Project Structure, Restoration Type, and Approach 4
3.	Location and Setting
4.	Project History and Background
5.	Monitoring Plan View
III. Pr	oject Condition and Monitoring Results8
A.	Vegetation Assessment
1.	Problem Areas Plan View (Vegetation) 11
2.	. Vegetative Problem Areas Table Summary 12
3.	. Vegetative Problem Areas Plan View12
B. Str	eam Assessment
1.	. Problem Areas Plan View (Stream) 13
2.	Problem Areas Table Summary 13
3.	Numbered Issues Photo Section13
4.	. Fixed Photo Station Photos 14
5.	. Stability Assessment
6	. Quantitative Measures Summary Tables14
7.	Benthic Macroinvertebrate Assessment 20
IV. M	ethodology Section

Tables

Exhibit Table I.	Project Restoration Components
Exhibit Table II.	Project Activity and Reporting History
Exhibit Table III.	Project Contact Table7
Exhibit Table IV.	Project Background Table7
Exhibit Table V.	Verification of Bankfull Events
Exhibit Table VII.	Categorical Stream Feature Visual Stability Assessment 14
Exhibit Table VIII.	Baseline Morphology and Hydraulic Summary16
Exhibit Table IX.	Morphology and Hydraulic Monitoring Summary18

Figure 1 - Project Vicinity Map

Appendix A - Vegetation Raw Data

- 1. Vegetation Survey Data Tables (V-1 V-5)
- 2. Vegetation Problem Area Table (A1)
- 3. Vegetation Problem Area Photos
- 4. Vegetation Monitoring Plot Photos

Appendix B - Geomorphologic Raw Data

- 1. Bankfull Events
- 2. Stream Problem Area Table (B1)
- 3. Representative Stream Problem Area Photos
- 4. Stream Photo-Station Photos
- 5. Exhibit Table B2 Qualitative Visual Stability Assessment
- 6. Annual Overlays of Cross Section Plots
- 7. Annual Overlays of Longitudinal Plots
- 8. Annual Overlays of Pebble Count Frequency Distribution Plots

Appendix C - Benthic Macroinvertebrate Assessment Data

Appendix D - Integrated Problem Area Plan View

- 1. Monitoring and Problem Area Plan View, Reach 1
- 2. Monitoring and Problem Area Plan View, Reach 2

I. Executive Summary / Project Abstract

The Gray Farm Stream Restoration project consists of two separate stream reaches (Reach 1 and Reach 2) along unnamed tributaries of Buffalo Shoals Creek, a tributary of the Catawba River (Cataloging Unit 03050101). The site is located approximately 10 miles due west of the City of Statesville in western Iredell County, NC. This restoration was contracted by Restoration Systems LLC (Contract # D05016-2) as a full-delivery project for the North Carolina Ecosystem Enhancement Program (NCEEP). This report summarizes the monitoring efforts for Year 3 (2008) of the Gray Farm Stream Restoration Project.

Restoration construction of Reach 2 began in early March 2006 and was completed in mid-April 2006. Restoration construction of Reach 1 began in mid-April 2006 and was completed in early July 2006. Demobilization and minor contractor punch list items were completed shortly thereafter. Installation of monitoring devices and As-built surveys for both reaches were performed as construction progressed.

Year 3 monitoring of the vegetated buffer was performed during the growing season of 2008 by Soil & Environmental Consultants, PA (S&EC). Stem counts were performed within the established vegetation monitoring plots, resulting in an average live stem density of approximately 445 stems per acre.

Physical monitoring of the restored channel for Year 3 consisted of the collection of cross-section and representative longitudinal profile data, in conjunction with visual stability assessment of the stream in the Fall of 2008. Collected data was then compared with As-built, Year 1 and Year 2 Monitoring data.

Based on Year 3 Monitoring results, the overall site has met the prescribed success criteria. Detailed analysis of the success of localized areas is discussed within.

Year 4 Monitoring will commence in January of 2009.

II. Project Background

The Gray Farm Stream Restoration project is located in the Catawba River Basin within Hydrologic Cataloging Unit 03050101. The site consists of two separate reaches (Reach 1 and Reach 2) along unnamed tributaries of Buffalo Shoals Creek, a tributary of the Catawba River. The site is located approximately 10 miles due west of the City of Statesville in western Iredell County, NC.

The restoration project objective was to restore the impaired streams to appropriately sized stream channels that were stable and self-maintaining, and would not aggrade or degrade over time. Restoration was accomplished with Rosgen-based natural channel design procedures and techniques. Reach 1 restoration was a combination of a Priority I (reconnection of the channel with its historic floodplain) restoration and a Priority II (construction of a new floodplain at a lower elevation) restoration. Reach 2 was a Priority I restoration. Restoring an appropriate sinuosity lengthened both channels, thereby lowering their bankfull slopes.

Restoration construction of Reach 2 began in early March 2006 and was completed in mid-April 2006. Restoration construction of Reach 1 began in mid-April 2006 and was completed in early July 2006. The buffer of both reaches of the restored stream channel were planted with native tree and shrub species and seeded with a native grass seed mix. During construction, site topography and grading allowed for the creation of vernal pools, oxbows, or pocket wetlands within the riparian zone along the restored stream reaches. Planting operations were performed in April 2006. Supplemental planting was performed in December of 2006.

Demobilization and minor contractor punch list items were completed shortly after the completion of construction. Installation of monitoring devices and As-built surveys for both reaches were performed as construction progressed.

1. Project Goals and Objectives

The goals of the Gray Farm Stream Restoration project are:

- 1) Improve local water quality within the restored channel reaches as well as the downstream watercourses through;
 - a. The reduction of current channel and off site sediment loads by restoring appropriately sized channels with stable beds and banks.
 - b. The reduction of nutrient loads (both soil enhancement practices and cattle) from adjacent agricultural fields with a restored riparian buffer.
 - c. The reduction of water temperatures provided by shading of the channel from canopy species along with the resultant increase in oxygen content.

- 2) Improve local aquatic and terrestrial habitat and diversity within the restored channels and their vicinity through;
 - a. The formation of varying bed form within the channels to provide for fish, amphibian, and benthic species.
 - b. The restoration of a suitable riparian buffer corridor which will provide both vertical and horizontal structure and connectivity with adjacent upland areas.
 - c. The restoration of understory and canopy species which will provide forage, cover, and nesting for a variety of mammals, reptiles, and birds.
- 3) Improve local watershed conditions through the restoration of two low order streams (one first order, one second order) and the placement of permanent conservation easements.

Through the restoration process the following objectives were accomplished:

- 1) Restore approximately 7,610 linear feet of appropriately sized stream channel that is stable and self-maintaining, and will not aggrade or degrade over time. Restoration was accomplished with Rosgen-based natural channel design procedures and techniques.
- 2) Develop restored channels with the appropriate morphological characteristics (cross-sectional dimension, pattern, and longitudinal profile) utilizing collected reference reach data as a guide. Allow for no net loss of overall channel length in the process.
- 3) Create and/or improve bed form diversity (riffles, runs, pools, and glides) and improve aquatic and benthic macroinvertebrate habitat.
- 4) Construct a floodplain (or local bankfull bench) that is accessible at the proposed bankfull channel elevation.
- 5) Ensure channel and stream bank stabilization by integrating in-stream structures and native bank vegetation.
- 6) Establish a native forested and herbaceous riverine buffer plant community within a minimum width of 50 feet from the edge of the restored channel. This new community will be established in conjunction with the eradication of any existing exotic and/or undesirable plant species.
- 7) Improve water quality within the subject channels and the downstream receiving waters.

8) Supplement the education and conservation efforts for natural resources in Iredell County as indicated in program goals for the local Soil & Water Conservation District and the NC Cooperative Extension Service.

2. Project Structure, Restoration Type, and Approach

The restoration project objective was to restore the impaired streams to appropriately sized stream channels that are stable and self-maintaining, and will not aggrade or degrade over time. Restoration was accomplished with Rosgenbased natural channel design procedures and techniques. Restoring an appropriate sinuosity lengthened both channels, thereby lowering their bankfull slope. A total of 8,004 linear feet of stream channel was restored onsite (8,004 SMU's).

Reach 1

Reach 1 restoration was a combination of a Priority I restoration (reconnection of the channel with its historic floodplain) and a Priority II restoration (construction of a new floodplain at a lower elevation). Reach 1 consists of 5,813 linear feet (5,813 SMU's) of restored Type C4 channel. Approximately 800 linear feet of this length was previously inundated by an existing farm pond that was removed during the channel restoration. The pre-restoration length of this channel segment was approximately 4,340 linear feet.

One additional piped farm road crossing previously existed approximately 700 feet downstream of an existing dam and farm pond near the upper end of Reach 1. This piped crossing was removed and replaced with an at-grade in-stream crossing. Immediately downstream of the dam for a distance of approximately 1,000 feet, severe bank erosion, channel incision, and an over-widening of the stream channel had occurred. This degradation appeared in large part due to previous uncontrolled releases from the existing dam spillway.

The lower two thirds of the reach were characterized by overly steep and undercut banks. Significant localized erosion had occurred along this lower portion. Trees of large diameter lined the banks, many of which were undercut, suspended, or had collapsed into the stream. The channel had down cut and over widened in many locations along the reach allowing no access to its floodplain. The last 200 feet (approximately) of the pre-existing channel was not down cut due to a change in surrounding topography.

The upper portion of Reach 1 has demonstrated pool development since the asbuilt survey. Significant sediment entered the pools at the upper end of Reach 1 shortly after construction. This sediment came from upstream sources to the north of the restoration site including areas of cattle pasture and areas previously inundated due to the old pond. This sediment was flushed from the system during the first year, causing these pools to deepen to their previously excavated depth. During Monitoring Year 3, sediment from the upstream cattle pasture again entered the upper portion of Reach 1. The area between station 0+00 and station 3+00 contains significant sediment, pools have filled, and structures have been buried. From station 3+00 to station 4+50, sediment is present, but less severe, and the riffle-pool sequence is more easily observed. It is important to note that the cattle pasture north of the restoration site is not under the ownership of the Grays.

Reach 2

Reach 2 was a Priority I restoration. Reach 2 consists of 2,191 linear feet (2,191 SMU's) of restored Type B4 channel. A small impoundment previously existed near the lower end of the reach; however, it was drained and removed a number of years prior to the channel restoration. A piped farm road crossing existed at roughly the same location (the old dam embankment). This was (and remains) the only existing crossing along the reach. The pre-restoration length of this channel segment was approximately 1,600 linear feet.

Throughout Reach 2, severe bank erosion, channel incision, and an over-widening of the stream channel had occurred. This impairment appeared in large part due to previous uncontrolled grazing operations. The reach was characterized by overly steep, sloughing, and undercut banks.

Significant localized erosion had occurred along the entire reach. Trees of large diameter lined the banks, many of which were undercut, suspended, or collapsed into the stream. The channel had down cut and over widened in many places along the reach allowing no access to its floodplain.

3. Location and Setting

The Gray Farm Stream Restoration project is located in the Catawba River Basin, Cataloging Unit 03050101. The site consists of two separate reaches (Reach 1 and Reach 2) along unnamed tributaries of Buffalo Shoals Creek, a tributary of the Catawba River. The site is located approximately 10 miles due west of the City of Statesville in western Iredell County, NC.

Reach 1 is located immediately north of Bolick Road (SR 1532). Reach 2 is located immediately west of the intersection of New Sterling Road (SR 1525) and Gray House Road. The watershed areas for Reaches 1 and 2 are estimated at approximately 0.91 square miles (582 acres) and 0.085 square miles (54 acres) respectively. See attached Figure 1.

4. Project History and Background

Exhibit Table I. Project Restoration Components Gray Farm Stream Restoration Site/EEP Project # 92219									
Project Segment or Reach ID	Existing Feet/Acres	Type	Approach	Footage or Acreage	Mitigation Ratio	Mitigation Units	Stationing		Comment
Reach I	3,000	R	PI	4,119	1:1	4,119	0+00 to 41+19		
Reach I	1,340	R	PII	1,694	1:1	1,694	41+19 to 58+	-13	
Reach II	1,600	R	PI	2,191	1:1	2,191	0+00 to 21+	91	
Mitigation Unit Summations									
Stream (lf)	Riparian Wetland (Ac)		Nonriparian Wetland (Ac)		Total Wetland (Ac)		Buffer (Ac)	C	omment
8,004	,004 N/A N/A		N/A	1	N/A	18.38			

The following tables summarize the project history and background:

Exhibit Table II. Project Activity and Reporting History Gray Farm Stream Restoration Site/EEP Project # 92219								
Activity or Report	Data Collection Complete	Actual Completion or Delivery						
Restoration Plan	Aug-05	Nov-05						
Construction	Reach 1	Jul-06						
	Reach 2	Apr-06						
Temporary S&E mix applied to entire project area	Apr-06	Apr-06						
Permanent seed mix applied to reach/segments 1 & 2	Apr-06	Apr-06						
Plantings for reach/segments 1 & 2	Apr-06	Apr-06						
Mitigation Plan / As-built (Year 0 Monitoring - baseline)	May-06	Jun-06						
Year 1 Monitoring	Dec-06	Dec-06						
Supplemental Planting	Dec-06							
Year 2 Monitoring	Nov-07	Dec-07						
Year 3 Monitoring	Nov-08	Dec-08						
Year 4 Monitoring								
Year 5 Monitoring								

Exhibit Table III. Project Contact Table Gray Farm Stream Restoration Site/EEP Project # 92219							
Designer	Soil & Environmental Consultants, PA						
Primary Project Design POC	11010 Raven Ridge Rd						
	Raleigh, NC 27614						
	Patrick K. Smith, P.E. (919) 846-5900						
Construction Contractor	North State Environmental						
Construction Contractor POC	2889 Lowery St.						
	Winston-Salem, NC 27101						
	Darrell Westmoreland (336) 725-2010						
Planting Contractor	North State Environmental						
Planting Contractor POC	2889 Lowery St.						
	Winston-Salem, NC 27101						
	Darrell Westmoreland (336) 725-2010						
Seeding Contractor	North State Environmental						
Seeding Contractor POC	2889 Lowery St.						
	Winston-Salem, NC 27101						
	Darrell Westmoreland (336) 725-2010						
Monitoring Performers	Soil & Environmental Consultants, PA						
	11010 Raven Ridge Rd.						
	Raleigh, NC 2761						
Stream Monitoring POC	David Gainey (919) 846-5900						
Vegetation Monitoring POC	David Gainey (919) 846-5900						

Exhibit Table IV. Projec Gray Farm Stream Restoration S	ct Background Table Site/EEP Project # 92219
Project County	Iredell
Drainage area	Reach 1 - 0.91 square miles (582 acres)
	Reach 2 - 0.085 square miles (54 acres)
Drainage impervious cover estimate (%)	< 20%
Stream Order	Reach 1 - 2nd order
	Reach 2 - 1st order
Physiographic Region	Piedmont
Ecoregion	Northern Inner Piedmont
Rosgen Classification of As-built	Reach 1 - C4
	Reach 2 - B4
Cowardin Classification	N/A
Dominant soil types	Reach 1 - Cw, CxB
	Reach 2 - CsE2
Reference site ID	Reach 1 - Tributary of Turkey Creek
	Reach 2 - Basin Creek
USGS HUC for Project and Reference	3050101
NCDWQ Sub-basin for Project and Reference	Reach 1 - 03-08-32 / 03-04-02
	Reach 2 - 03-08-32 / 03-07-01
NCDWQ classification for Project and Reference	Reach 1 - WS-IV; CA / C;NSW
	Reach 2 - WS-IV; CA / C; Tr; ORW
Any portion of any project segment 303d listed?	No
Any portion of any project segment upstream of a 303d listed segment?	No
Reasons for 303d listing or stressor	N/A
% of project easement fenced	Reach 1 – No Fence, Reach 2 - 100%

5. Monitoring Plan View

Six (6) tree and shrub buffer vegetation plots (four (4) on Reach 1 and two (2) on Reach 2) and four (4) bank vegetation plots (two (2) on Reach 1 and two (2) on Reach 2) were established. All vegetation monitoring occurs within these plots throughout the monitoring period for as long as they continue to be representative of the community.

For all buffer monitoring plots, Level 1 of the Carolina Vegetation Survey-Ecosystem Enhancement Program (CVS-EEP) Protocol for Recording Vegetation was utilized for vegetation sampling in Years 1 and 2. Beginning in Year 3, Level 2 of the CVS-EEP protocol was utilized in order to record and report woody plant volunteers within vegetation monitoring plots along with planted stems. A corner of each vegetation monitoring plot will be used as a permanent photo point for vegetation monitoring photos. Locations of these photo points are shown on the attached Monitoring Plan View.

A total of five (5) benthic macroinvertebrate sampling stations was established during Year 3 Monitoring. Reach 1, Station 1 is located immediately upstream of the restored Reach 1. Reach 1, Station 2 is located within the restored Reach 1. Reach 1, Station 3 is located immediately downstream of the restored Reach 1. Reach 2, Station 1 is located within the restored Reach 2. Reach 2, station 2 is located immediately downstream of the restored Reach 2. Locations of these benthic macroinvertebrate sampling points for Year 3 are shown in Appendix D.1.

A total of seven (7) nested riffle and pool cross-section pairs was established along Reach 1, and two (2) nested riffle and pool cross-section pairs were established along Reach 2. Each cross-section also serves as a designated photo point that will be photographed annually.

The locations of all monitoring devices are shown in Appendix D.1 (Monitoring Plan View, Reaches 1 and 2).

III. Project Condition and Monitoring Results

A. Vegetation Assessment

The success of the adjacent riparian buffer will be based on the combined survival of tree and shrub species for the five-year monitoring period.

In order to be considered successful, survival of woody (tree and shrub) species planted within the restored buffers will be at least 320 stems/acre through year three, 288 stems/acre at year four, and 260 stems/acre at year five. The stem count will be based on an average of the stem counts of the evaluated tree and shrub buffer vegetation plots.

The success of the bank vegetation plots along the restored channels will be based on the survival of live stake (or other) bank plantings for the five-year monitoring period. Survival of bank plantings will be based on a linear average of approximately 50 percent of the planted stems within the restoration reaches.

The approximately 18.4 acre restoration area was planted with various native hardwood tree and shrub species native to the area. Reaches 1 and 2 were planted in April 2006. Supplemental planting was performed in December of 2006.

The following tree species were planted in the Riparian Buffer Area:

- Alnus serrulata (Tag Alder)
- *Betula nigra* (River Birch)
- Carpinus caroliniana (Ironwood)
- Fraxinus pennsylvanica (Green Ash)
- *Ilex opaca* (American Holly)
- *Lindera benzoin* (Spicebush)
- *Liriodendron tulipifera* (Tulip Poplar)
- Platanus occidentalis (Sycamore)
- *Quercus michauxii* (Swamp Chestnut Oak)
- *Quercus nigra* (Water Oak)
- *Quercus phellos* (Willow Oak)
- Viburnum nudum (Possumhaw)

Stream banks were planted with live stakes in two offset rows. The following shrub species were planted as live stakes:

- *Cornus amomum* (Silky Dogwood)
- Salix sericea (Silky Willow)
- Sambucus canadensis (Elderberry)

As previously described, a total of six (6) buffer vegetation monitoring plots were established on site in 2006. The success criteria for the site require a minimum of 320 live stems per acre for the first three (3) years of monitoring. Year 3 vegetation monitoring shows 445 live stems per acre. Future buffer vegetation monitoring data will be compared with previous monitoring data to determine survival rates and stem densities for woody vegetation planted within the riparian buffer. Vegetation monitoring data for buffer plots was collected using Level 2 of the CVS-EEP monitoring protocol and is presented in Appendix A.

NOTE: Level 2 of the CVS-EEP monitoring protocol includes both planted and natural (volunteer) woody stems. For this reason, volunteer specimens are included in the total number of species, as reflected in Tables V-2 through V-4. Table V-5 (Stem Count by Plot and Species) does not include volunteer/natural woody stem data, only planted stems. Four (4) bank vegetation plots were also established (two on each reach) to monitor survival of live stake plantings along stream banks. Live stake survival is based on baseline data collected during Year 1 Monitoring in 2006. Future bank vegetation monitoring data will be compared with previous monitoring data to determine survival rates for live stakes planted along stream banks. Live stake survival from Monitoring Year 1 to Monitoring Year 3 for the site overall is approximately 80.3%, an increase from the Year 2 live stake survival percentage. We attribute this increase in live stake survival to revegetation and resprouting of numerous live stakes following the severe drought experienced during the previous growing season. Live stake counts by species and by plot are presented in the following tables:

2006 - REACH 1									
Common Name	Species	REA	CH 1	Species Total	% of Total				
		BANK 1	BANK 2						
Silky Dogwood	Cornus amomum	12	17	29	39%				
Silky Willow	Salix sericea	30	16	46	61%				
	TOTAL	42	33	75	100%				
	2007	- REACH 1							
Common Name	Species	REA	CH 1	Species Total	% of Total				
		BANK 1	BANK 2						
Silky Dogwood	Cornus amomum	4	9	13	27%				
Silky Willow	Salix sericea	27	9	36	73%				
	TOTAL	31	18	49	100%				
	Live Stake Survival =	73.8%	54.5%	65.3%					
	2008	- REACH 1							
Common Name	Species	REA	CH 1	Species Total	% of Total				
		BANK 1	BANK 2						
Silky Dogwood	Cornus amomum	10	9	19	36%				
Silky Willow	Salix sericea	30	4	34	64%				
	TOTAL	40	13	53	100%				
	Live Stake Survival =	95.2%	39.4%	70.7%					

	2006	- REACH 2	,		
Common Name	Species	REACH 2 Species Total BANK 1 BANK 2			% of Total
		BANK 1	BANK 2		
Silky Willow	Salix sericea	7	4	11	23%
Silky Dogwood	Cornus amomum	9	25	34	72%
Elderberry	Sambucus canadensis	0	2	2	4%
	TOTAL	16	31	47	100%
	2007	- REACH 2			
Common Name	Species	REA	CH 2	Species Total	% of Total
		BANK 1	BANK 2		
Silky Willow	Salix sericea	6	4	10	29%
Silky Dogwood	Cornus amomum	5	20	25	71%
Elderberry	Sambucus canadensis	0	0	0	0%
	TOTAL	11	24	35	100%
	Live Stake Survival =	68.8%	77.4%	74.5%	
	2008	- REACH 2	1		
Common Name	Species	REA	CH 2	Species Total	% of Total
		BANK 1	BANK 2		
Silky Willow	Salix sericea	7	4	11	24%
Silky Dogwood	Cornus amomum	8	25	33	73%
Elderberry	Sambucus canadensis	0	1	1	2%
	TOTAL	15	30	45	100%
	Live Stake Survival =	93.8%	96.8%	95.7%	

Although some vegetation plots showed an increase of live stakes following the drought conditions during the 2007 growing season, other plots did not. This lack of resurgence, especially in Reach 1 Bank Plot 2, is attributed to dense herbaceous vegetation along stream banks. Most surviving live stakes appear healthy and are growing vigorously.

Herbaceous vegetation varies widely throughout the restoration site. The native herbaceous species have become densely established and are dominant throughout the site. Herbaceous species observed along stream banks and in the buffer and wetlands onsite include:

- Impatiens capensis Jewelweed
- Juncus effusus Soft Rush
- Leersia oryzoides Cutgrass
- Mimulus ringens Monkeyflower
- Carex spp.- Sedges

- Panicum virgatum Switchgrass
- Sagittaria latifolia Duck Potato
- Solidago sp. Goldenrod
- *Eupatorium capillifolium* Dog-fennel
- Eupatorium perfoliatum Boneset

1. Problem Areas Plan View (Vegetation)

During field inspections on May 19th, September 17th and November 19th and 20th, 2008, a total of fourteen localized areas of bare bank and floodplain were observed on Reaches 1 and 2. These areas appear to be due primarily to either

surface flows or poor soil conditions. Although a higher number of bare areas was observed during Monitoring Year 3 as compared to those observed during Monitoring Year 2, these areas are generally smaller and less severe. Several of the areas documented in Monitoring Year 2 have revegetated. Vegetation Problem Areas are shown on Sheets 6 through 9 (Reach 1) and Sheets 14 through 16 (Reach 2). Photos are included in Appendix A.

During Monitoring Year 2, small amounts of the non-natives Johnsongrass (*Sorghum halepense*) and tall fescue (*Lolium arundinaceum*) were observed at the edges of the buffer restoration areas that border the agricultural fields on both reaches. These populations have not become dominant, nor have they excluded native vegetation.

An area of Kudzu (*Pueraria lobata*) was noted at the site in early June 2007, on the west side of Reach 1 between stations 16+00 to 19+00. Although the majority of the kudzu was along and in the edge of the woods immediately outside the easement area, some had encroached into the easement area. The area (approximately 0.5 acre) was treated with the herbicide Transline (clopyralid) at a rate of one pint per acre in 2007. A small portion of this area was again treated in 2008. The area will continue to be monitored to determine if re-treatment is necessary. During 2008, a small area (approximately 0.009 acre) of Kudzu was observed immediately east of station 13+00, within the easement area. This area will also be monitored and treated if kudzu continues to encroach into the easement area.

While we will continue to monitor these areas, based on vegetative success criteria the overall site currently exhibits strong vegetative success.

2. Vegetative Problem Areas Table Summary

Vegetative problem areas observed are shown in Table A1 in Appendix A.

3. Vegetative Problem Areas Plan View

Vegetative problem areas are shown on Sheets 6 through 9 for Reach 1 and Sheets 14 through 16 for Reach 2 (Problem Area Plan View).

B. Stream Assessment

A review of available on-line USGS gauge sites was performed to determine if a suitable surrogate gauges was present in the area. No nearby gauge was identified. The closest USGS gauge to the site was on the Lower Little River (near Healing Springs, NC, Gauge Identification Number 02142000) which is approximately 15 miles from the project site. Based on this large distance, significant disparity in watershed sizes, and topographic variation, it is unlikely that a conclusive determination regarding the number of bankfull events experienced on the restoration site could be made. Based upon recommendations provided by NCEEP a crest gauge was installed on site (at Cross-section 3 on Reach 1). The gauge was installed in June of 2008 and checked during subsequent site visits for evidence of bankfull events. In addition, site observations during visits performed this monitoring year including wrack lines, staining of vegetation, displaced/flattened vegetation, and observable sediment deposition indicate that multiple overbank events have occurred. Photographs documenting overbank conditions during Monitoring Year 3 are attached in Appendix B. The dates of site visits where evidence of bankfull events were observed are listed in the table below.

Exhibit Table V. Verification of Bankfull Events Gray Farm Stream Restoration Site/EEP Project # 92219										
Date of Data Collection	Date of Occurrence	Method	Photo #							
5/19/2008	Unknown		n/a							
6/25/2008	Unknown	Onsite observations (wrack lines, staining	n/a							
8/26/2008	Unknown	vegetation and observable sediment	n/a							
9/17/2008	Unknown	deposition and select crest gauge readings)	1,2,4							
11/19/2008	Unknown		3							

1. Problem Areas Plan View (Stream)

An assessment of channel stability was also performed on November 19th and 20th, 2008. Areas of concern that were observed and documented included some minor localized bank scour, buried structures, and stressed structures. Detail of such scour is evident in cross-section 6 (pool). These problem areas are shown on Sheets 6 through 9 for Reach 1 and Sheets 14 through 16 for Reach 2 (Problem Area Plan View). The minimal extent of scour and erosion around structures does not warrant repair at this time.

These areas will continue to be monitored, even though the site exhibits stable conditions and meets the requirements for physical success based on physical success criteria.

2. Problem Areas Table Summary

Stream problem areas observed are shown in Table B1 in Appendix B.

3. Numbered Issues Photo Section

Representative photos of each category of stream problem area are shown in Appendix B.

4. Fixed Photo Station Photos

Photos from established photo stations (at each cross-section) were collected during the stream survey (November 2008). These photos are included in Appendix B.

5. Stability Assessment

A visual qualitative assessment was performed to inspect channel facets, meanders, bed, banks, and installed structures. This visual assessment was confirmed and enhanced with a quantitative assessment of the physical stream survey. The goal of this assessment is to provide a percentage of the features listed in Table VII that are in a state of stability. Table VII was compiled from the data in Table B1 in Appendix B of this report.

Table VIIa: Categorical Stream Feature Visual Stability Assessment Gray Farm Stream and Wetland Restoration Site/EEP Project # 92219 Reach 1									
Feature	MY-1 2006	MY-2 2007	MY-3 2008	MY-4 2009	MY-5 2010				
A. Riffles	100%	100%	98%						
B. Pools	100%	100%	100%						
C. Thalweg	99%	99%	99%						
D. Meanders	100%	100%	100%						
E. Bed General	96%	99%	99%						
F. Bank Condition	100%	99%	99%						
G. Vanes/ J Hooks, etc.	99%	98%	98%						
H. Wads and Boulders	N/A	N/A	N/A						

Table VIIb: Categorical Stream Feature Visual Stability AssessmentGray Farm Stream and Wetland Restoration Site/EEP Project # 92219Reach 2									
Feature	MY-1 2006	MY-2 2007	MY-3 2008	MY-4 2009	MY-5 2010				
A. Riffles	100%	100%	100%						
B. Pools	100%	100%	100%						
C. Thalweg	100%	100%	100%						
D. Meanders	99%	98%	98%						
E. Bed General	100%	100%	100%						
F. Bank Condition	100%	100%	99%						
G. Vanes/ J Hooks, etc.	99%	96%	95%						
H. Wads and Boulders	N/A	N/A	N/A						

6. Quantitative Measures Summary Tables

The following tables (Table VIII and Table IX) summarize the quantitative data collected from the cross-sectional and representative longitudinal stream

survey. This data was analyzed and summarized, and then compared with baseline data types available for this project.

The Quantitative Morphology Tables illustrate the degree of departure, if any, of the current channel from the baseline data. Tables VIII and IX were compiled from the cross-section and profile raw data and plots located in Appendix B of this report.

Table VIII. Baseline Morphology and Hydraulic Summary GRAY FARM STREAM RESTORATION SITE (EEP Project #92219) REACH 1												
Parameter	Pre-E	existing Con	dition	Project	Reference	Stream	Design			As-built		
Dimension	Min	Max	Avg.	Min	Max	Avg.	Min	Max	Avg.	Min	Max	Avg.
BF Width (ft) Floodprone Width	15.77	15.77	15.77	32.08	32.08	32.08	15.2	15.2	15.2	13.62	19.48	16.02
(ft)	19.41	52.54	20.39		100		47	90.34	47	37.49	89.67	61.53
Sectional Area (ft ²)	17.87	17.87	17.87	79.79	79.79	79.79	17.84	17.84	17.84	11.01	17.92	13.79
BF Mean Depth (ft)	1.13	1.13	1.13	2.49	2.49	2.49	1.17	1.17	1.17	0.7	0.94	0.86
BF Max Depth (ft)	1.49	1.49	1.49	3.61	3.61	3.61	1.71	1.71	1.71	1.36	2.04	1.61
Width/Depth Ratio	13.96	13.96	13.96	12.43	12.43	12.43	12.67	12.67	12.67	18.63	20.07	19.46
Entrenchment Ratio	1.29	1.29	1.29	3.47	3.47	3.47	3.09	3.09	3.09	2.75	4.6	3.84
Wetted Perimeter(ft)	16.52	16.52	16.52	34.8	34.8	34.8	16.01	16.01	16.01	13.26	16.41	15.67
Hydraulic radius (ft)		1.08			2.29			1.11		0.69	0.92	0.83
Pattern												
Channel Beltwidth (ft)	67.62	137.29	98.27	70.8	91.93	84.35	26.1	61.8	40.75	59.32	93.89	72.85
Radius of Curvature (ft)	64.8	121.04	81.58	13.36	36.57	26.56	19.97	37.85	28.23	16.64	40.88	25.73
Meander Wavelength (ft)	716.91	716.91	716.91	148.13	291.09	221.56	77.08	117.13	95.07	77.08	117.13	94.8
Meander Width ratio	4.29	8.71	6.23	2.21	2.87	2.63	1.72	4.07	2.68	3.7	5.86	4.55
Profile												
Riffle length (ft)	N/A	N/A	N/A	32.94	48.35	40.29	19.31	54.86	30.86	25.87	54.2	37.85
Riffle slope (ft/ft)	0.00632	0.00657	0.00647	0.00809	0.01395	0.01074		0.0057		0.00092	0.0187	0.0062
Pool length (ft)	93.8	159.47	119.6	8.96	41.09	26.43	22.9	33.17	29.66	7.41	244.47	23.01
Pool Slope (ft/ft)	N/A	N/A	N/A	N/A	N/A	N/A	0.0009	0.0029	0.0013	0.0007	0.0064	0.0016
Pool spacing (ft)	347.07	525.3	444	44.08	130.73	67.98	51.66	82.92	67.79	12.35	142	70.94
Substrate												
d50 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
d84 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Additional Reach Parameters												
Valley Length (ft)		4258.3			648.35		4258.3			4258.3		
Channel Length (ft)		4939.628			758.58			5622			5813.3	
Sinuosity		1.16			1.17			1.29			1.36	
Water Surface Slope (ft/ft)		0.00647			0.01074			0.0057			0.00544	
BF slope (ft/ft)		0.00647			0.01074			0.0057			0.00544	
Rosgen Classification		F4			C4			C4			C4	
*Habitat Index		N/A			N/A			N/A			N/A	
*Macrobenthos		N/A			N/A			N/A			N/A	

	Table VIII. Baseline Morphology and Hydraulic SummaryGRAY FARM STREAM RESTORATION SITE (EEP Project #92219)												
			GKAYFA	KIVI STKE	AM KESI R	ORATION EACH 2	511E (EE	P Project #	92219)				
Parameter	Pre-E	xisting Con	ndition	Project	Reference	Stream		Design			As-built		
			-						-				
Dimension BE Width (ft)	Min 5.24	Max	Avg.	Min	Max	Avg.	Min	Max	Avg.	Min 7.28	Max	Avg.	
Floodprone	7.04	7.04	7.04	8.73	8.73	8.73	12.4	12.4	12.4	13.96	39.05	26.53	
Width (ft) BF Cross													
Sectional Area (ft ²)	3.88	3.88	3.88	1.94	1.94	1.94	3.96	3.96	3.96	4.14	6.77	5.46	
BF Mean Depth (ft)	0.73	0.73	0.73	0.4	0.4	0.4	0.57	0.57	0.57	0.56	0.82	0.69	
BF Max Depth (ft)	1.13	1.13	1.13	0.61	0.61	0.61	0.87	0.87	0.87	0.86	1.3	1.08	
Width/Depth Ratio	7.32	7.32	7.32	12.15	12.15	12.15	12.11	12.11	12.11	1.01	13.18	11.3	
Entrenchment Ratio	1.32	1.32	1.32	1.8	1.8	1.8	1.8	1.8	1.8	1.9	4.7	3.4	
Wetted Perimeter(ft)	6.03	6.03	6.03	5.28	5.28	5.28	7.36	7.36	7.36	7.68	8.77	8.23	
Hydraulic radius (ft)		0.64	•	0.37			0.94737	0.94737	0.94737	0.78261	1.11594	0.95652	
Pattern													
Channel Beltwidth (ft)	43.58	68.11	54.22	6.97	22.7	13.32	9.49	16.5	12.65	11.83	22.05	16.96	
Radius of Curvature (ft)	32.54	52.64	41.25	4.1	8.88	5.93	6.71	9.9	8.05	4.63	9.1	6.43	
Meander Wavelength (ft)	209.46	394.66	334.46	22.47	68.78	46.57	31.6	37.12	34.08	27.51	34.72	31.75	
Meander Width ratio	8.16	12.75	10.15	1.43	4.67	2.74	1.38	2.39	1.83	1.52	2.83	2.17	
Profile													
Riffle length (ft)	N/A	N/A	N/A	5.52	7.6	6.39	4.93	7.24	5.88	3.36	11.6	5.6	
Riffle slope (ft/ft)	0.0179	0.03688	0.02444	0.03022	0.05058	0.04025		0.0258		0.0053	0.0555	0.0279	
Pool length (ft)	26.27	54.41	40.34	7.56	10.65	8.78	6.25	10.46	8.45	5.2	10.08	7.59	
Pool Slope (ft/ft)	N/A	N/A	N/A	N/A	N/A	N/A	0.0017	0.0087	0.003	0.001	0.0092	0.0022	
Pool spacing (ft)	125.7	474.65	265.15	20.17	70.04	46.72	15.73	23.84	19.22	9.43	28.94	19.51	
Substrate													
d50 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
u84 (IIIII)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Additional Reach Parameters													
Valley Length (ft)	1872			216.55			1872			1872			
Channel Length (ft)	1965.6			266.36				2114			2191		
Sinuosity	1.05				1.23			1.16			1.2		
Water Surface Slope (ft/ft)	0.0286				0.039		0.0258			0.025			
BF slope (ft/ft)	0.0286				0.039		0.0258			0.025			
Rosgen Classification		G4			B4		B4			B4			
*Habitat Index		N/A			N/A			N/A			N/A		
*Macrobenthos	N/A N/A				N/A			N/A		N/A			

				F	Exhibit Tab GRAY FAI	le IX. Mo RM STRE	orphology AM REST	and Hydi ORATION	aulic Mon SITE (EEI	itoring Su Project #9	mmary 02219)					
Parameter	1							RE	ACH 1							
Tarancer		RIF	FLE 1			PO	DL 1	RE2		RIFF	LE 2			POO	DL 2	
			r	r		THET MY1 MY2 MY2 AS BUILT MY1 MY2 MY2 AS B									r	
Dimension	AS BUILT	MY1	MY2	MY3	AS BUILT	MY1	MY2	MY3	AS BUILT	MY1	MY2	MY3	AS BUILT	MY1	MY2	MY3
DE WELL (A)	2006	2006	2007	2008	2006	2006	2007	2008	2006	2006	2007	2008	2006	2006	2007	2008
Floodprone Width (ft)	54.53	50	50	50	61.28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					57.43	58.07	57.82	57.47		
BF Cross Sectional Area (ft ²)	11.97	5.96	12.52	5.98	39.71	41.33	38.36	36.03	11.01	9.18	9.29	9.23	29.04	26.98	31.28	27.23
BF Mean Depth (ft)	0.78	0.53	0.6	0.55	1.78	1.98	1.58	1.73	0.81	0.68	0.55	0.62	1.39	1.32	1.17	1.37
BF Max Depth (ft)	1.39	0.87	1.42	1.26	3.29	3.47	3.61	3.58	1.53	1.25	1.46	1.6	2.89	2.74	3.63	3.04
Width/Depth Ratio	19.67	21.23	34.62	19.8	12.54	10.53	15.32	12.03	16.81	19.94	30.71	23.84	14.99	15.46	22.79	14.49
Entrenchment Ratio	3.56	4.44	2.41	4.59	2.75	2.99	2.6	3.01	4.4	4.45	3.55	4.05	2.76	2.85	2.17	2.89
Wetted Perimeter(ft)	15.67	11.41	21.04	11.21	23.83	3 22.42 25.37 22.41 13.97 13.82 17.34 15.21 21.8						21.83	21.52	26.62	22.24	
Hydraulic radius (ft)	0.76	0.52	0.6	0.53	1.67	1.84	1.51	1.61	0.79	0.66	0.54	0.61	1.33	1.25	1.09	1.22
Substrate																
d50 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
d84 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
					-				-				-			
Parameter								RE	ACH 1							
		RIFF	FLE 3			POO	DL 3			RIFF	LE 4			POC	DL 4	
Dimension	AS BUILT	MY1	MY2	MY3	AS BUILT	MY1	MY2	MY3	AS BUILT	MY1	MY2	MY3	AS BUILT	MY1	MY2	MY3
	2006	2006	2007	2008	2006	2006	2007	2008	2006	2006	2007	2008	2006	2006	2007	2008
BF Width (ft)	12.94	12.1	13.55	12.89	20.75	21.49	22.08	21.98	15.7	19	17.9	18.01	20.28	21.29	24.79	19.85
Floodprone Width (ft)	89.67	89.64	89.86	89.54	61.38	61.32	61.04	61.15	66.39	66.2	66.27	66.51	65.77	65.75	66	65.83
BF Cross Sectional Area (ft ²)	9.49	9.25	23.48	9.82	34.09	33.59	32.19	31.82	11.02	13.49	18.12	11.58	32.64	38.77	32.22	33.03
BF Mean Depth (ft)	0.73	0.76	0.48	0.76	1.64	1.56	1.46	1.45	0.7	0.71	0.4	0.64	1.61	1.82	1.3	1.66
BF Max Depth (ft)	1.41	1.36	1.64	1.44	3.03	2.83	2.94	2.78	1.36	1.41	1.3	1.37	2.79	3.2	2.83	2.83
Width/Depth Ratio	17.73	15.92	102.88	16.96	12.65	13.78	15.12	15.16	22.43	26.76	112.6	28.14	12.6	11.79	19.07	11.96
Entrenchment Ratio	6.93	7.41	1.82	6.94	2.96	2.85	2.76	2.78	4.23	3.48	1.47	3.69	3.24	3.09	2.66	3.32
Wetted Perimeter(ft)	13.26	12.46	49.83	13.27	27 21.78 22.45 23.01 22.94 16.01 19.29 45.45 18.39 21.59 22.97							26.04	21.21			
Hydraulic radius (ft)	0.72	0.74	0.47	0.74	1.57	1.5	1.4	1.39	0.69	0.7	0.4	0.63	1.51	1.69	1.24	1.56
Substrate																
d50 (mm)	0.65	17	1.6	20	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
d84 (mm)	4	33	50	60	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Parameter	REACH 1															
		RIFF	LE 5			POO	DL 5			RIFF	LE 6			POO	0L 6	
Dimension	AS BUILT	MY1	MY2	MY3	AS BUILT	MY1	MY2	MY3	AS BUILT	MY1	MY2	MY3	AS BUILT	MY1	MY2	MY3
	2006	2006	2007	2008	2006	2006	2007	2008	2006	2006	2007	2008	2006	2006	2007	2008
BF Width (ft)	15.63	14.32	16.03	13.84	26.27	23.03	22.33	24.07	17.01	14.54	24.63	19.03	18.59	21.11	19.69	22.85
Floodprone Width (ft)	72.27	64.56	73.17	72.59	68.23	68.53	68.67	68.48	50.57	60	60	49.29	60.15	62.76	63	66.56
BF Cross Sectional Area (ft ²)	14.76	14.03	30.25	13.33	37.47	33.39	32.16	35.95	16	14.61	16.62	12.89	26.72	27.06	51.7	53
BF Mean Depth (ft)	0.94	0.98	0.59	0.96	1.43	1.45	11.44	1.49	0.94	1.01	0.67	0.68	1.44	1.28	2.63	2.32
BF Max Depth (ft)	1.67	2.27	2.19	1.99	2.75	3.08	3.12	3.23	1.56	1.49	1.43	1.31	2.83	3.14	4.82	4.71
Width/Depth Ratio	16.63	14.61	86.86	14.42	18.37	15.88	15.51	16.15	18.1	14.4	36.76	27.99	12.91	16.49	7.49	9.85
Entrenchment Ratio	4.62	4.51	1.43	5.24	2.6	2.98	3.08	2.85	2.97	4.13	2.44	2.59	3.24	2.97	3.2	2.91
Wetted Perimeter(ft)	16.14	15.28	52.22	14.88	27.26	24.24	23.58	25.72	17.42	15	24.92	19.32	20.27	22.27	23.49	27.89
Hydraulic radius (ft)	0.91	0.92	0.58	0.9	1.37	1.38	1.36	1.4	0.92	0.97	0.67	0.67	1.32	1.21	2.2	1.9
Substrate					1											
d50 (mm)	N/A	N/A	N/A	N/A												
d84 (mm)	N/A	N/A	N/A	N/A												

Parameter	REACH 1												
		RIFI	FLE 7			PO	OL 7						
Dimension	AS BUILT	MY1	MY2	MY3	AS BUILT	MY1	MY2	MY3					
	2006	2006	2007	2008	2006	2006	2007	2008					
BF Width (ft)	19.48	16.96	22.43	19.14	22.66	22.31	23.12	22.38					
Floodprone Width (ft)	50	50	50	50	51.23	55	55	51					
BF Cross Sectional	17.92	15.49	16.94	15.82	42.08	38.22	36.39	35.4					
BF Mean Depth (ft)	0.92	0.91	0.76	0.83	1.86	1.71	1.57	1.58					
BF Max Depth (ft)	2.04	1.61	1.68	1.76	3.47	3.06	3.03	2.91					
Width/Depth Ratio	21.17	18.64	29.51	23.06	12.18	13.03	14.73	14.16					
Entrenchment Ratio	2.57	2.95	2.23	2.61	2.26	2.46	2.38	2.28					
Wetted Perimeter(ft)	20.08	17.38	22.83	19.59	23.91	24.11	24.31	23.66					
Hydraulic radius (ft)	0.89	0.89	0.74	0.81	1.76	1.59	1.5	1.5					
Substrate													
d50 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A					
d84 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A					

					R	EACH 1						
Parameter	А	s-built (200)6)	1	MY-1 (200	5)	1	MY-2 (2007	7)	N	AY-3 (2008	5)
Pattern	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
Channel Beltwidth (ft	59.32	93.89	72.85	58.48	96.38	71.67	58.96	97.33	72.54	35.42	103.28	67.02
Radius of Curvature (ft)	16.64	40.88	25.73	16.84	39.51	24.43	16.72	40.02	25.69	18.06	41.31	29.62
Meander Wavelength (ft)	77.08	117.13	94.8	76.54	118.26	91.85	75.94	120.96	92.17	81.64	125.68	102.42
Meander Width ratio	3.7	5.86	4.55	3.56	5.72	4.65	3.24	6.23	4.98	4.08	6.28	5.12
Profile												
Riffle length (ft)	25.87	54.2	37.85	19.31	54.86	30.86	22.15	58.62	34.61	17.03	56.21	34.53
Riffle slope (ft/ft)	0.00092	0.0187	0.0062	0.00125	0.01763	0.00883	0.0017	0.025	0.009	0.00115	0.033	0.01196
Pool length (ft)	7.41	244.47	23.01	14.19	31.92	24.11	15.64	34.81	26.84	23.86	56.25	38.65
Pool Slope (ft/ft)	0.0007	0.0064	0.0016	0.0007	0.0029	0.0012	0.0007	0.004	0.0017	0.0007	0.0033	0.0013
Pool spacing (ft)	12.35	142	70.94	52.58	159	88.05	45.21	148	85.94	44.7	172.7	92.69
Additional Reach Parameters												
Valley Length (ft)		4258.3			4258.3			4258.3			4258.3	
Channel Length (ft)		5813.3			5813.3			5813.3			5813.3	
Sinuosity		1.36			1.36			1.36			1.36	
Water Surface Slope (ft/ft)		0.00544			0.00544			0.00544			0.00544	
BF slope (ft/ft)		0.00544			0.00544			0.00544			0.00544	
Rosgen Classification		C4		C4		C4				C4		
Habitat Index*		N/A		Ī	N/A			N/A		Ī	N/A	
Macrobenthos*		N/A			N/A			N/A		N/A		

Parameter								REA	ACH 2							
		RIF	FLE 1			PO	OL 1			RIFF	LE 2			POC	DL 2	
Dimension	AS BUILT	MY1	MY2	MY3	AS BUILT	MY1	MY2	MY3	AS BUILT	MY1	MY2	MY3	AS BUILT	MY1	MY2	MY3
	2006	2006	2007	2008	2006	2006	2007	2008	2006	2006	2007	2008	2006	2006	2007	2008
BF Width (ft)	7.38	7.61	10.66	8.67	18.44	17.46	22.47	20.95	8.21	7.6	9.16	8.98	9.59	10.03	5.56	3.56
Floodprone Width (ft)	23.08	26.25	29.56	25.54	46.7	46.7	46.7	46.78	39.05	26.17	26	40.5	54.65	51.62	54.65	54.65
BF Cross Sectional Area (ft ²)	4.14	4.65	5.33	4.74	19.78	18.94	23.35	21.96	6.77	4.86	7.71	6.71	17.34	16.04	5.82	3.92
BF Mean Depth (ft)	0.56	0.61	0.5	0.55	1.07	1.09	1.04	1.05	0.82	0.64	0.84	0.75	1.81	1.6	1.05	1.1
BF Max Depth (ft)	0.86	0.98	1	0.94	2.6	2.64	2.63	2.58	1.3	1.19	1.47	1.23	3.2	2.88	1.54	1.63
Width/Depth Ratio	13.18	12.48	13.5	15.76	17.23	16.02	21.61	19.95	10.01	11.88	10.9	11.97	5.3	6.27	5.3	3.24
Entrenchment Ratio	3.13	1.84	2.77	2.95	2.53	2.67	2.08	2.23	4.76	3.44	2.84	4.51	5.7	5.15	9.8	15.37
Wetted Perimeter(ft)	7.68	7.92	10.91	8.94	20.58	19.14	24.19	22.77	8.77	8.01	9.68	9.36	12.14	11.79	6.8	5.41
Hydraulic radius (ft)	0.54	0.59	0.58	0.53	0.96	0.99	0.97	0.96	0.77	0.61	0.8	0.72	1.43	1.37	0.86	0.72
Substrate																
d50 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	4.8	7	0.12	4	N/A	N/A	N/A	N/A
d84 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	28	42	0.6	66	N/A	N/A	N/A	N/A

					RI	EACH 2						
Parameter	rameter As-built (2006)			1	MY-1 (2006	i)	N	MY-2 (2007	')	Ν	AY-3 (2008	5)
Pattern	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
Channel Beltwidth (ft	11.83	22.05	16.96	11.56	23.13	17.05	11.45	24.13	17.55	10.41	25.86	15.91
Radius of Curvature (ft)	4.63	9.1	6.43	4.776	9.84	6.32	4.7	9.7	6.1	3.85	11.5	7.38
Meander Wavelength (ft)	27.51	34.72	31.75	28.61	35.43	32.47	28.42	35.03	31.73	21.56	40.37	30.58
Meander Width ratio	1.52	2.83	2.17	1.43	2.94	2.33	1.48	2.95	2.41	2.70	5.05	3.82
Profile												
Riffle length (ft)	3.36	11.6	5.6	4.93	7.24	5.88	4.95	7.64	6.01	4.2	15.24	8.73
Riffle slope (ft/ft)	0.0053	0.0555	0.0279	0.0045	0.1073	0.0393	0.0049	0.0534	0.0325	0.00231	0.10249	0.037
Pool length (ft)	5.2	10.08	7.59	5.17	14.37	8.67	5	15.25	10.125	4.07	12.31	9.59
Pool Slope (ft/ft)	0.001	0.0092	0.0022	0.00087	0.00754	0.00253	0.00084	0.00253	0.00738	0.0009	0.01199	0.00236
Pool spacing (ft)	9.43	28.94	19.51	14.65	35.31	21.98	14.65	36.12	26.95	8.83	33.24	19.04
Additional Reach Parameters												
Valley Length (ft)		1872.37			1872.37			1872.37			1872.37	
Channel Length (ft)		2190.67			2190.67			2190.67			2190.67	
Sinuosity		1.2			1.2			1.2			1.2	
Water Surface Slope (ft/ft)		0.025			0.025			0.025			0.025	
BF slope (ft/ft)		0.025		0.025			0.025			0.025		
Rosgen Classification		B4		B4			B4			B4		
Habitat Index*		N/A			N/A			N/A			N/A	
Macrobenthos*		N/A			N/A			N/A		N/A		

7. Benthic Macroinvertebrate Assessment and Interpretation of Data

Year 3 benthic sampling was performed by professionals with the necessary DWQ certification credentials. Samples were preserved in the field in 95% denatured Ethyl alcohol. Following collection, samples were sent to Pennington and Associates, a certified laboratory, for identification. Year 3 results will be included in the Year 4 Monitoring Report.

As stated in the Gray Farm Stream Restoration Mitigation Report (July 2006), biological monitoring will be used as a general indicator of restoration success; however, no specific biological criteria apply to the success of the restoration reaches.

As previously described, benthic sampling was performed at five (5) sampling locations. Where possible, each monitoring station consisted of a riffle-pool sequence. At each station, the Qual-4 sampling method, as described in the NCDENR-DWQ's <u>Standard Operating Procedures for Benthic</u> <u>Macroinvertebrates</u>. The Qual-4 method consists of:

Kick Net Sample (from riffle)
Sweep Net Sample (from bank)
Leaf Pack Sample
Visual Observation Sample

Ephemeropteran, Plecopteran, and Tricohopteran (EPT) taxa and abundance and NC Biotic Indices (NCBI), as well as a list of all taxa collected at each sampling point during previous monitoring years, are provided in Appendix C.

The Benthic Macroinvertebrate Assessment presented in this report is based on Year 2 benthic sampling conducted in October, 2007. Due to the late collection season for benthic macroinvertebrates (as recommended by Mr. Larry Eaton of NC-DWQ) and the time required to receive identified samples from the laboratory, Year 3 collection data is not yet available. Year 3 benthic sampling was conducted on November 20th, 2008, and will be presented as part of the Year 4 Monitoring Report. Year 3 benthic samples are currently being processed by Pennington and Associates.

Benthic data for Year 2 indicate that water quality within Reach 1 increases moving downstream. EPT taxa become more abundant, species diversity increases, and tolerant species decrease with distance from the uppermost portion of the site abutting the cow pasture and upstream degraded channel segment. These data indicate that the restoration of Reach 1 has been successful in improving water quality within the subject channels and the downstream receiving waters.

Within Reach 2, there were not enough macroinvertebrates with an assigned NCBI rating collected during Year 2 at Station 1, within the restoration reach, to make a determination of NCBI, and no EPT taxa were collected at Station

1; however, EPT taxa, species diversity and abundance increased between Station 1 and Station 2. Station 2 received the lowest NCBI score (4.49), indicating few tolerant taxa and relatively high water quality. Although inconclusive, data for Reach 2 are encouraging.

IV. Methodology Section

With the exception of the aforementioned use of Level 2 (Planted and Natural Woody Stems) of the CVS-EEP Vegetation Monitoring Protocol, no deviations from initially prescribed methodologies were implemented as a part of Monitoring Year 3 (2008) activities.

APPENDIX A

VEGETATION RAW DATA

.

APPENDIX A.1 -

Vegetation Survey Data Tables

Table V-1 – Vegetation Metadata

Report Prepared By	David Cooper
Date Prepared	9/24/2008 12:09
database name	DRAFT_2008-Gray Farm-level2.mdb
database location	\\Sec2\jobs7-9k\9385.D7-D11\YEAR 3 - D9\MONITORING DATA
DESCRIPTION OF WORKSHI	EETS IN THIS DOCUMENT
Metadata	This worksheet, which is a summary of the project and the project data.
Plots	List of plots surveyed.
Vigor	Frequency distribution of vigor classes.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Stem Count by Plot and Spp	Count of living stems of each species for each plot; dead and missing stems are excluded.

PROJECT SUMMARY-----

Project Code	project Name	Description	length(ft)	stream-to-edge width (ft)	area (sq m)	Required Plots (calculated)	Sampled Plots
GF1	Gray Farm Reach 1	Gray Farm stream restoration - Reach 1					4
GF2	Gray Farm Reach 2	Gray Farm stream restoration - Reach 2					2

Table V-2 – Vegetation Vigor by Species

	Species	4	3	2	1	0	Missing
	Alnus serrulata	2	2	1			2
	Betula nigra	2				1	1
	Cornus amomum		3				
	Diospyros virginiana						
	Fraxinus						
	pennsylvanica	2	1				3
	Quercus michauxii					1	
	Quercus nigra						2
	Quercus phellos	4	3	10			
	Salix nigra						
	Sambucus canadensis						
	Viburnum nudum	1					1
	Viburnum		1				
	Viburnum dentatum	1					
	Ilex opaca			2			4
	Betula lenta						
	Carpinus caroliniana		1				
	Juniperus virginiana						
	Quercus						8
	Quercus rubra	2	1				
	Lindera benzoin				1		3
	Liriodendron						
	tulipifera	2	1				3
	Platanus occidentalis	10	9	4		1	4
	Prunus serotina						
	Acer negundo						
	Acer rubrum						
TOT:	25	26	22	17	1	3	31

	Species	All Damage Categories	(no damage)	Deer	Insects	Unknown	(other damage)
	Acer negundo	2	2				
	Acer rubrum	2	2				
	Alnus serrulata	7	6	1			
	Betula lenta	1	1				
	Betula nigra	4	3			1	
	Carpinus						
	caroliniana	1	1				
	Cornus amomum	3		3			
	Diospyros						
	virginiana	3	3				
	Fraxinus						
	pennsylvanica	7	7				
	Ilex opaca	6	5				1
	Juniperus						
	virginiana	1	1				
	Lindera benzoin	4	3		1		
	Liriodendron	0	0				
	tulipifera	8	8				
	Platanus	30	20			1	
	Drupus constine	30	29			1	
	Prunus serouna	1	1				
	Quercus	8	8				
	michauxii	1				1	
	Quercus nigra	2	2			1	
	Quereus nhallos	17	14			3	
	Quercus prierios	17	14			5	
	Quercus rubra	4	4				
	Sanx nigra	1	1				
	canadensis	2	2				
	Vihurnum	1	1				
	Viburnum	1	1				
	dentatum	1	1				
	Viburnum nudum	2	2				
TOT:	25	119	107	4	1	6	1

Table V-3 – Vegetation Damage by Species

Table V-4 –	Vegetation	Damage	by Plot
-------------	------------	--------	---------

	plot	All Damage Categories	(no damage)	Deer	Insects	Unknown	(other damage)
	GFR1-01-buffer1-						
	year:2	19	15	1		3	
	GFR1-01-buffer2-						
	year:2	22	19		1	2	
	GFR1-01-buffer3-						
	year:2	18	15	1		1	1
	GFR1-01-buffer4-						
	year:2	17	15	2			
	GFR2-01-Buffer1-						
	year:2	25	25				
	GFR2-01-Buffer2-						
	year:2	18	18				
TOT:	6	119	107	4	1	6	1

Table V-5 – Stem Count by Plot and Species

	Species	Total Stems	# plots	avg# stems	Reach 1, Buffer Plot 1, Year 3	Reach 1, Buffer Plot 2, Year 3	Reach 1, Buffer Plot 3, Year 3	Reach 1, Buffer Plot 4, Year 3	Reach 2, Buffer Plot 1, Year 3	Reach 2, Buffer Plot 2, Year 3
	Alnus serrulata	5	4	1.25	2	1	1	1		
	Betula nigra	2	2	1			1	1		
	Carpinus caroliniana	1	1	1					1	
	Cornus amomum	3	2	1.5			1	2		
	Fraxinus pennsylvanica	3	3	1	1	1	1			
	Ilex opaca	2	2	1			1		1	
	Lindera benzoin	1	1	1		1				
	Liriodendron tulipifera	3	2	1.5		1				2
	Platanus occidentalis	23	6	3.83	2	2	9	7	2	1
	Quercus phellos	17	4	4.25	4	2			10	1
	Quercus rubra	3	2	1.5	2					1
	Viburnum	1	1	1		1				
	Viburnum dentatum	1	1	1						1
	Viburnum nudum	1	1	1		1				
Tot	14	66	6		11	10	14	11	14	6
	Total Plot De	nsity (Stem	s Per Acr	e)	445	405	567	445	567	243
	Average Plot Density	(Stems Per	· Acre)	445						

APPENDIX A.2 –

Vegetation Problem Area Tables

	Exhibit Table A1 - Vegeta	ative Problem Areas							
	Reach	1							
Feature/Issue	Feature/Issue Station # / Range Probable Cause								
	0+00 - 0+50	Surface flow / Poor soil quality							
	1+00 - 1+40	Surface flow / Poor soil quality							
	2+00 - 2+60	Surface flow / Poor soil quality							
	3+50 - 4+00	Surface flow / Poor soil quality							
Dava Ela adulato	4+50 - 5+75	Surface flow / Poor soil quality	1.2						
Bare Floodplain	6+10 - 6+90	Surface flow / Poor soil quality	1-2						
	37+80 - 38+50	Surface flow / Poor soil quality							
	42+00 - 42+50	Surface flow / Poor soil quality							
	42+75 - 43+30	Surface flow / Poor soil quality							
	50+00 - 50+60	Surface flow / Poor soil quality							
Bare Bank	40+70 - 41+00	Bank Scour	3						
	Reach 2								
Feature/Issue	Station # / Range	Probable Cause	Photo #						
	3+25 - 3+35	Surface flow / Poor soil quality							
Bare Floodplain	5+30 - 5+50	Surface flow / Poor soil quality	4						
-	20+75 - 20+85	Surface flow / Poor soil quality							

APPENDIX A.3 –

Vegetation Problem Area Photos

Photo 1 – Typical Bare Bench/Floodplain – Reach 1 – Year 3 (2008)

Photo 2 – Typical Bare Bench/Floodplain – Reach 1 – Year 3 (2008)

Gray Farm Stream Restoration Site Year 3 Monitoring December 2008

Photo 3 – Typical Bare Bank – Reach 1 – Year 3 (2008)

Photo 4 – Typical Bare Bench/Floodplain – Reach 2 – Year 3 (2008)

Gray Farm Stream Restoration Site Year 3 Monitoring December 2008
APPENDIX A.4 -

Vegetation Monitoring Plot Photos

Vegetation Monitoring Plot—Reach 1—Buffer 1—Year 3 (2008)

Vegetation Monitoring Plot—Reach 1—Buffer 1—Year 2 (2007)

Vegetation Monitoring Plot—Reach 1—Buffer 1—Year 1 (2006)

Vegetation Monitoring Plot—Reach 1—Buffer 2—Year 3 (2008)

Vegetation Monitoring Plot—Reach 1—Buffer 2—Year 2 (2007)

Vegetation Monitoring Plot—Reach 1—Buffer 2—Year 1 (2006)

Vegetation Monitoring Plot—Reach 1—Buffer 3—Year 3 (2008)

Vegetation Monitoring Plot—Reach 1—Buffer 3—Year 2 (2007)

Vegetation Monitoring Plot—Reach 1—Buffer 3—Year 1 (2006)

Vegetation Monitoring Plot—Reach 1—Buffer 4—Year 3 (2008)

Vegetation Monitoring Plot—Reach 1—Buffer 4—Year 2 (2007)

Vegetation Monitoring Plot—Reach 1—Buffer 4—Year 1 (2006)

Vegetation Monitoring Plot—Reach 1—Bank 1—Year 3 (2008)

Vegetation Monitoring Plot—Reach 1—Bank 1—Year 2 (2007)

Vegetation Monitoring Plot—Reach 1—Bank 1—Year 1 (2006)

Vegetation Monitoring Plot—Reach 1—Bank 2—Year 3 (2008)

Vegetation Monitoring Plot—Reach 1—Bank 2—Year 2 (2007)

Appendix A

Vegetation Monitoring Plot—Reach 1—Bank 2—Year 1 (2006)

Vegetation Monitoring Plot—Reach 2—Buffer 1—Year 3 (2008)

Vegetation Monitoring Plot—Reach 2—Buffer 1—Year 2 (2007)

Vegetation Monitoring Plot—Reach 2—Buffer 1—Year 1 (2006)

Vegetation Monitoring Plot—Reach 2—Buffer 2—Year 3 (2008)

Vegetation Monitoring Plot—Reach 2—Buffer 2—Year 2 (2007)

Vegetation Monitoring Plot—Reach 2—Buffer 2—Year 1 (2006)

Vegetation Monitoring Plot—Reach 2—Bank 1—Year 3 (2008)

Vegetation Monitoring Plot—Reach 2—Bank 1—Year 2 (2007)

Vegetation Monitoring Plot—Reach 2—Bank 1—Year 1 (2006)

Vegetation Monitoring Plot—Reach 2—Bank 2—Year 3 (2008)

Vegetation Monitoring Plot—Reach 2—Bank 2—Year 2 (2007)

Vegetation Monitoring Plot—Reach 2—Bank 2—Year 1 (2006)

APPENDIX B

GEOMORPHOLOGIC RAW DATA

APPENDIX B.1 -

Bankfull Events

Photo 1 – Reach 1 – Flattened Vegetation from Surface Flow

Photo 2 – Reach 1 – Wrack Pile at Corner of Buffer Monitoring Plot 3

Photo 3 – Reach 1 – Flattened Vegetation from Surface Flow

Photo 4 – Reach 2 – Flattened Vegetation from Surface Flow

APPENDIX B.2 –

Stream Problem Area Table (Table B1)

Exhibit Table B1- Stream Problem Areas				
Gray Farm Stream Restoration Site/EEP Project #92219				
Reach 1				
Feature Issue	Station numbers	Suspected Cause	Photo number	
Bank Scour	14+00	Surface flow		
	32+60	Surface flow	1-2	
	40+75	Surface flow	-	
	43+05	Surface flow - Settling fill		
Structures	0+30	Buried Structure - Upstream Sediment	3	
	1+50	Buried Structure - Upstream Sediment		
	24+75	Stressed structure - Bank Scour	2	
	32+60	Stressed structure - Bank Scour		
	43+05	Stressed structure - Bank Scour		

Reach 2				
Feature Issue	Station numbers	Suspected Cause	Photo number	
Bank Scour	4+80	Surface flow	4	
	6+00	Surface flow		
	16+60	Surface flow		
	12+70 - 12+80	Surface flow		
Undercut Bank		Increased water velocity from nearby	5	
	47+00 - 47+50	tributary		
Structures	4+80	Stressed structure - Bank Scour	4	
	6+00	Stressed structure - Bank Scour		
	16+60	Stressed structure - Bank Scour		
	12+70 - 12+80	Stressed structures - Bank Scour		

APPENDIX B.3 –

Stream Problem Area Photos

Photo 1 – Typical Bank Scour – Reach 1 – Year 3 (2008)

Photo 2 – Typical Stressed Structure/Bank Scour – Reach 1 – Year 3 (2008)

Photo 3 – Typical Buried Structure from Off-Site Sediment Source – Reach 1 – Year 3 (2008)

Photo 4 – Typical Stressed Structure/Bank Scour – Reach 2 – Year 3 (2008)

Photo 5 – Undercut Bank – Reach 1 – Year 3 (2008)

APPENDIX B.4 -

Stream Photo-Station Photos

Cross-Section 1— Reach 1—Riffle 1—Year 3 (2008)

Cross-Section 1— Reach 1—Riffle 1—Year 2 (2007)

Cross-Section 1— Reach 1—Riffle 1—Year 1 (2006)

Cross-Section 1— Reach 1—Pool 1—Year 3 (2008)

Cross-Section 1— Reach 1—Pool 1—Year 2 (2007)

Cross-Section 1— Reach 1—Pool 1—Year 1 (2006)

Cross-Section 2—Reach 1—Riffle 2—Year 3 (2008)

Cross-Section 2—Reach 1—Riffle 2—Year 2 (2007)

Cross-Section 2—Reach 1—Riffle 2—Year 1 (2006)

Cross-Section 2—Reach 1 - Pool 2—Year 3 (2008)

Cross-Section 2—Reach 1 - Pool 2—Year 2 (2007)

Cross-Section 2—Reach 1 - Pool 2—Year 1 (2006)

Cross-Section 3—Reach 1—Riffle 3—Year 3 (2008)

Cross-Section 3—Reach 1—Riffle 3—Year 2 (2007)

Cross-Section 3—Reach 1—Riffle 3—Year 1 (2006)

Cross-Section 3—Reach 1 - Pool 3—Year 3 (2008)

Cross-Section 3—Reach 1 - Pool 3—Year 2 (2007)

Appendix B

Cross-Section 3—Reach 1 - Pool 3—Year 1 (2006)

Cross-Section 4—Reach 1—Riffle 4—Year 3 (2008)

Cross-Section 4—Reach 1—Riffle 4—Year 2 (2007)

Cross-Section 4—Reach 1—Riffle 4—Year 1 (2006)

Cross-Section 4—Reach 1—Pool 4—Year 3 (2008)

Cross-Section 4—Reach 1—Pool 4—Year 2 (2007)

Cross-Section 4—Reach 1—Pool 4—Year 1 (2006)

Cross-Section 5—Reach 1—Riffle 5—Year 3 (2008)

Cross-Section 5—Reach 1—Riffle 5—Year 2 (2007)

Cross-Section 5—Reach 1—Riffle 5—Year 1 (2006)

Cross-Section 5—Reach 1—Pool 5—Year 3 (2008)

Cross-Section 5—Reach 1—Pool 5—Year 2 (2007)

Cross-Section 5—Reach 1—Pool 5—Year 1 (2006)

Cross-Section 6—Reach 1—Riffle 6—Year 3 (2008)

Cross-Section 6—Reach 1—Riffle 6—Year 2 (2007)

Cross-Section 6—Reach 1—Riffle 6—Year 1 (2006)

Cross-Section 6—Reach 1—Pool 6—Year 3 (2008)

Cross-Section 6—Reach 1—Pool 6—Year 2 (2007)

Cross-Section 6—Reach 1—Pool 6—Year 1 (2006)

Cross-Section 7—Reach 1—Riffle 7—Year 3 (2008)

Cross-Section 7—Reach 1—Riffle 7—Year 2 (2007)

Cross-Section 7—Reach 1—Riffle 7—Year 1 (2006)

Cross-Section 7—Reach 1—Pool 7—Year 3 (2008)

Cross-Section 7—Reach 1—Pool 7—Year 2 (2007)

Appendix B

Cross-Section 7—Reach 1—Pool 7—Year 1 (2006)

Cross-Section 1—Reach 2—Riffle 1—Year 3 (2008)

Cross-Section 1—Reach 2—Riffle 1—Year 2 (2007)

Cross-Section 1—Reach 2—Riffle 1—Year 1 (2006)

Cross-Section 1—Reach 2—Pool 1—Year 3 (2008)

Cross-Section 1—Reach 2—Pool 1—Year 2 (2007)

Cross-Section 1—Reach 2—Pool 1—Year 1 (2006)

Cross-Section 2—Reach 2—Riffle 2—Year 3 (2008)

Cross-Section 2—Reach 2—Riffle 2—Year 2 (2007)

Cross-Section 2—Reach 2—Riffle 2—Year 1 (2006)

Cross-Section 2—Reach 2—Pool 2—Year 3 (2008)

Cross-Section 2—Reach 2—Pool 2—Year 2 (2007)

Cross-Section 2—Reach 2—Pool 2—Year 1 (2006)

APPENDIX B.5 –

Exhibit Table B2 - Qualitative Visual Stability Assessment

Table B2 - Qualitative Visual Stability AssessmentDate: NOVEMBER 2008GRAY FARM STREAM RESTORATION - REACH 1

Project # 9385.D9

				1	1	
Feature Category		(# stable)	Total	Total		Feature
		Number	number	Number /	% perfor.	Perform
		performing		feet in	in stable	Mean or
		as	built	unstable	condition	Total
	Metric (per As-built and reference baselines	intended	built	state		TOtal
A. Riffles	1. Present?	34	34	NA	100%	
	2. Armor stable (e.g. no displacement)?	34	34	NA	100%	
	3. Facet grade appears stable?	33	34	NA	97%	
	4. Stable interval grade?	34	34	NA	100%	
	5. Feature spacing appropriate?	34	34	NA	100%	
	6. Minimal evidence of embedding/fining?	34	34	NA	100%	
	7. Depth appears appropriate for current discharge?	34	34	NA	100%	
	8. Length appropriate?	34	34	NA	100%	100%
B. Pools	1. Present? (e.g. not subject to severe aggradation?)	49	49	NA	100%	
	2. Sufficciently deep (Max Pool D:Mean Bkf>1.6)	49	49	NA	100%	
	3. Thalweg located outer bend?	49	49	NA	100%	
	4. Spacing appropriate?	49	49	NA	100%	
	5. Non-aggrading (not filling)?	49	49	NA	100%	
	6. Length appropriate?	49	49	NA	100%	100%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	34	34	NA	100%	
o. maiweg	2. Downstream of meander (glide/inflection) centering?	33	34	NA	97%	99%
D Meanders	1. Outer bend in state of limited/controlled erosion?	49	49	NA	100%	
D. moundoro	2. Of those eroding, # w/ concomitant point bar formation?	N/A	49	NA	N/A	
	3. Apparent Rc within spec?	49	49	NA	100%	
	4. Sufficient floodplain access and relief?	49	49	NA	100%	100%
E. Bed General	1. General channel bed accradation areas (bar formation)	NA	NA	0	100%	
	2. Channel bed degradation - areas of increasing down				000/	000/
	cutting or head cutting?	NA	NA	75	98%	99%
G. Banks	1. Apparent scour points from channel processes	NA	NA	20	99%	
	2. Apparent cut points from overland flow	NA	NA	150	96%	
	3. Apparent cut or scour from flood water re-entry to channel	NA	NA	0	100%	
	4 Tension cracks	NA	NA	0	100%	
	5 Bank gradient in excess of 40%?	NA	NA	0	100%	
	6. Collanse/slumping	NA	NA	0	100%	
	7. Ratio of bank height: bankfull height elevated	NA	NA	0	100%	99%
H. Vanes	1 Free of back or arm scour?	27	28	NI/A	06%	
	2 Height appropriate?	28	20	N/A N/Δ	100%	
	2. Togril appropriate: 3. Angle and geometry appear appropriate?	<u>∠0</u> 27	20	N/A	06%	
	4. Free of piping or other structural failures?	21	20	N/A	90 /0 100%	08%
		20	20	IN/A	100 //	30 /0
I. Wads/Boulders	1. Free of scour?	0	0	N/A	N/A	
	2. Footing stable?	0	0	N/A	N/A	N/A

Notes:

Table B2 - Qualitative Visual Stability AssessmentDate: NOVEMBER 2008GRAY FARM STREAM RESTORATION - REACH 2

Project # 9385.D9

Feature Category		(# stable)	Total	Total		Feature
		Number	number	Number /	% perfor.	Perform
		performing	ner As-	feet in	in stable	Mean or
		as	built	unstable	condition	Total
	Metric (per As-built and reference baselines	intended	built	state		Total
A. Riffles	1. Present?	51	51	NA	100%	
	2. Armor stable (e.g. no displacement)?	51	51	NA	100%	
	3. Facet grade appears stable?	51	51	NA	100%	
	4. Stable interval grade?	51	51	NA	100%	
	5. Feature spacing appropriate?	51	51	NA	100%	
	6. Minimal evidence of embedding/fining?	51	51	NA	100%	
	7. Depth appears appropriate for current discharge?	51	51	NA	100%	
	8. Length appropriate?	51	51	NA	100%	100%
B. Pools	1. Present? (e.g. not subject to severe aggradation?)	52	52	NA	100%	
	2. Suffieciently deep (Max Pool D:Mean Bkf>1.6)	52	52	NA	100%	
	3. Thalweg located outer bend?	52	52	NA	100%	
	4. Spacing appropriate?	52	52	NA	N/A	
	5. Non-aggrading (not filling)?	52	52	NA	100%	
	6. Length appropriate?	52	52	NA	N/A	100%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	51	51	NA	100%	[
e. manog	2. Downstream of meander (glide/inflection) centering?	51	51	NA	100%	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	50	52	NA	96%	
	2. Of those eroding, # w/ concomitant point bar formation?	N/A	N/A	NA	N/A	
	3. Apparent Rc within spec?	52	52	NA	100%	
	4. Sufficient floodplain access and relief?	52	52	NA	100%	98%
E. Bed General	1. General channel bed aggradation areas (bar formation)	NA	NA	0	100%	
	 Channel bed degradation - areas of increasing down cutting or head cutting? 	NA	NA	0	100%	100%
G. Banks	1. Apparent scour points from channel processes	NA	NA	20	98%	
	2. Apparent cut points from overland flow	NA	NA	0	100%	
	3. Apparent cut or scour from flood water re-entry to channel (e.g. inadequate floodplain access?)	NA	NA	0	100%	
	4. Tension cracks	NA	NA	0	100%	
	5. Bank gradient in excess of 40%?	NA	NA	0	100%	
	6. Collapse/slumping	NA	NA	0	100%	
	7. Ratio of bank height: bankfull height elevated	NA	NA	0	100%	100%
H. Vanes	1. Free of back or arm scour?	50	53	NA	94%	
	2. Height appropriate?	53	53	NA	100%	
	3. Angle and geometry appear appropriate?	51	53	NA	96%	
	4. Free of piping or other structural failures?	50	53	NA	94%	96%
L Wads/Boulders	1 Free of scour?	0	0	NA	N/A	
	2. Footing stable?	0	0	NA	N/A	N/A
		~	5		,	

Notes:

APPENDIX B.6 -

Annual Overlays of Cross Section Plots

→Year 3 → Year 2 → Year 1 → As Built

→ Year 3 → Year 2 → Year I → As Built

→ Year 3 → Year 2 → Year I → As Built

GRAY FARM STREAM RESTORATION

GRAY FARM STREAM RESTORATION REACH 1 - CROSS-SECTION 7 (POOL) (STA. 54+45)

→ Year 3 → Year 2 → Year 1 → As-Built

APPENDIX B.7 –

Annual Overlays of Longitudinal Plots

GRAY FARM STREAM RESTORATION REACH I - LONGITUDINAL PROFILE (STA. 0+00 TO 18+70)

20+00

GRAY FARM STREAM RESTORATION REACH I - LONGITUDINAL PROFILE (STA. 37+50 TO 55+50)

→ Year 3 → Year 2 → Year 1 → As-Built ♦ XS

GRAY FARM STREAM RESTORATION REACH 2 - LONGITUDINAL PROFILE (STA. 4+65 TO 10+65)

10+65

GRAY FARM STREAM RESTORATION REACH 2 - LONGITUDINAL PROFILE (STA. 15+68 TO 20+18)

→ Year 3 → Year 2 → Year 1 → As-Built ♦ XS

20+18

APPENDIX B.8 -

Annual Overlays of Pebble Count Frequency Distribution Plots

Pebble Count, Gray Farm Reach 1

APPENDIX C

BENTHIC MACROINVERTEBRATE ASSESSMENT DATA

		REACH 1 STATION 1 UPSTREAM OF REACH 1 WIT					REACH 1 STATION 2				DOWN	REACH 1	STATION 3 OF REST. F	REACH	w	REACH 2	STATION 1 RATION RI	EACH	DOWN	REACH 2 STATION 2 DOWNSTREAM OF REST. REACH				
STECIES	550	Pre	Year	1 Year 2	Year 3	Pre	Ye	ar 1	Year 2	Year 3	Pre	Year 1	Year 2	Year 3	Pre	Year 1	Year 2	Year 3	Pre 2005	Year 1	Year 2	Year 3		
PLATYHELMINTHES	mg	0	2001		2000	0		1	2007		0				0		2007		0					
Turbellaria Tricladida		0	-			0	E				0				0				0					
Plananidae Cura foremanii		ő				0	-				0				0				1					
Bivalvia	- 1	0				0					0				ő				0					
Sphaeriidae	FC	0				0					0				0				ő					
Gastropoda	FC	3				Ů					Ů				1.1				ľ					
Physidae								-																
Physella sp. Physella sp. Disportidos	-							3					1											
Micromenetus dilatatus	- 1		—					1																
Lymnaeidae		8		- 1																				
ANNELIDA Oligochaeta	69	0	<u> </u>			0					0				°				0					
Chaelogaster sp. Tubificidae		0				0	F				0				, o	1			0					
Tubificidae w.h.c. Quistaddlus multisetosus	- 1	, i				ľ													· ·					
Lumbriculida	- 1								1									<u>.</u>			1			
Naididae Rristina loidei	CG	0				0					0				0				0					
W/O Cap Setae						0	F				0								ů	1				
Arachnoidea		Ő				0					ů ů				Ŏ				0 0					
Lebertiidae		o				0					ů ů				Ŏ				0					
Crustacea		Ů									Ŭ				ľ				Ů					
Caecidotea communis	- 1	-	3														1							
Isopoda Asolidoo							F																	
Caecidotea sp. Amphicada			-	6			F																	
Crangonyctidae				-			F	_					ļ,											
Crangonyx sp. Hyalelia sp.	- 1		3	_			E																	
Ephemeroptera		0				0	E				0	<u> </u>			0				0					
Baelidae Baelis sp.	CG	0				1					0		2		0				ò					
Baells Ilavistriga Centroptilum sp.							E		7				1											
Baetisca carolina	CG	0				1			1		3				0 0				ő					
Caenidae Caenis sp.		l .		-				1																
Ephemerellidae Ephemerella sp.	sc sc	0	1			10			2		1				0				0					
Eurylophella sp. Heptageniidae	sc	0				0					0		1		0				0					
Maccallertium (Stenonema) sp. Maccallertium (Stenonema) modestum	sc sc	0				10			14		3 10	10	27		0				10 3		2			
Stenonema carlsoni Stenacron interpunctatum	sc	0				0					1	1	.1		0				0	1				
Stenacron pallidum Leptophlebiidae	CG	0				0					0	-			0				0	1				
Leptophlebia sp. Paraleptophlebia sp.	CG	0		_		0	_				1				3						1			
Odonata Aeshnidae	Р	0		_		0		_			0				0				0					
Boyeria vinosa Calopterygidae	P	0				0	_				0		-		0				0					
Calopteryx sp. Coenagrionidae	P	3				0	_				0				3				0					
Ischnura sp. Gomphidae	Р	0				0		1			0		1		0				0					
Lanthus sp. Ophiogomphus sp.	P	0				1			1		0				0				ő					
Libellulidae Plathemis lydia				_												3								
Capniidae	SH	0			1	10					0		39		1				10					
Allocapnia sp. Perlidae	P	0	3	1		0			6		0	3			0				0	3	32			
Eccoptura xanthenes Periodidae	P	0	1			0	-		1		0				0				3					
Isoperia sp. Taenioplerygidae	۲	0				3							1											
Corixidae	1	0		-		0		1			0				0				0					
Sigara sp. Veliidae	Р	0				0					0				U U				1 ·					
Megaloptera Candelidas	5	0				0					0				0				0					
Nigronia fasciatus Trichontera	P	0	-	_		0	F				0				0				1					
Hydropsychidae Choumstoneucho en	FC	0		_		0			6		0		1		0 0				Ŏ					
Diplectrona modesta	FC	0		_		0		2			0				1				10					
Limnephilidae		U U	-			Ů	E				3				Ů				Ů					
Philopotamidae Chimore storing	FC	0				0					0				0				0	\vdash				
Dolophilodes sp. Psychomylidae	FC	ŏ				Ő	_				1	<u> </u>	<u> </u>		ő				Ő					
Lype diverse Bhussenbilides							_					1												
Rhyacophila sp.				-									1						0					
Dryopidae Helichus sp		o	-		 	0	F				ő				ŏ				ŏ	- 1				
Helichus fastigiatus	sc	0	-			0	F				0				1				0	<u> </u>				
Agabus sp.	P	0				0					0		 		3	3			0					
Neoporus sp.	P1	0	-	1			F														2			
Cutinoae Oulimnius latiusculus	CG	0				1					0				0				0					
Helophorus linearis		0	-	-		0	F				0				1				0					
Psephenidae	SC	0	-			0	E				0	<u> </u>			0				0					
Ptilodactylidae	SH	0			 	0					0				0				0	-				
Scirtidae	SC SC	0				0	F				0	<u> </u>			3				0					
Ceratopogonidae	P	0				1					0				0				0					
ындан-афонуна sp.	- F - I	0	L			. 0	L			L	0	L	J	إيسمعه	- U					L				

Chironomidae	- 10	0		0		T	0		8	0		1		0	[]	1	
Brillia flavifrons S	SH 📗	o i		, o			-1			ō		tt		ō			
Chaetocladius sn. C	G	, i		1	-		- i			ň		1 1		ŏ			
Chironomus sp. C	G	1		ó			- i			ō				ŏ			
Clinotanypus sp					1		-					<u> </u>					
Conchanelonia so	P	0		0			-1 1		2	3		++		0			
Convogeura so		3		10			-		20			+		10			
Criedonus en	~~	ő		1		27	- i		11	1 I I I I I I I I I I I I I I I I I I I		++		1			
Diamaga an	~	0		1 · · ·			°			Carl .		+					
Dialasta dina an				00						1010							
Diplociadus sp.							-								1		_
Endeshime enuiger G		0		8 · ·					10	0		l		· ·			
Endochironomus sp.							-									1	
Eukieltenella claripennis gp. G	G	0		3		1	0			0				0			
Heterotrissociadius marcidus gr.	- 8									100					3		
Kiefferulus sp.	- 8										1						
Microtendipes pedellus gp. C	CG	0	ii	0	3		1		1 0	0				1	5		
Natarsia sp.							1000 C				1				3		
Odontomesa sp.	- 11		1	664						2000							
Orthocladius sp.	- 8					1			1	林 田			1				
Parachaetocladius sp.	- 11						-n		1				1			2	
Paracladopelma sp. C	CG 📗	0		1			0			0				0			
Parametriocnemus sp. C	G	3	1 1	0	1		- 0	1	43	10	3		1	0			
Paraphaenocladius sp.	- 10										3						
Paratendines sp. C	G I	1		0			0			0				0			
Pentaneurini	- 1						-				1	1					
Polynerfilum falley or	- 8		1	100					<u> </u>	100		1			r		
Polynerfilum flavum (convictum)	ан 📗	3		3			3		1	0		1		10	·		
Polynedilym helterela	su l	i i		ő	-		-1 - 8		1	i i		<u>}·</u> → }	_	0	+		
Polynodium illinooneo		10 C - 1		v			- ·					++		, v			
Polypeonam mindense Defusedilum es	- 8					· · · · · · · · · · · · · · · · · · ·	-		·······								
Polypealan sp.	- 11				10		- 30			10		<u> </u>					
Polypealium untum	- 8							J		1.00	<u> </u>	<u> </u>					
Procladius sp.	- 11										1				··· · · · · · · · · · · · · · · · · ·		
Psectrolanypus sp.							-		- · · · · · · · · · · · · · · · · · · ·	150	1	···			<u> </u>		
Rheochcolopus robacki G	G	0		1			1			0				0			
Rheotanytarsus exiguus gr.	- 20		1		10				.5	110							
Rheotanytarsus sp. F	FC	1		0			0			0				0			
Stilocladius clinopecten	- 11	0		1			0		2	0		I		0			
Stictochironomus devinctus C	G	0	9	0			1			0				0			
Stictochironomus sp.	- 11		3							80					1		
Tanytarsus sp. F	FC	3	3	0	1		0		3	3	1			0			
Thienemanniella sp.	- 8				1					0.0							
Thienemanniella xena C	CG	1		3			3		13	1				1			
Thienemannimyia gr. sp.	- 10		10		10				3		3				1		
Tribelos jucundum	18	0	1	0			0		1	1				0	10		
Tvetenia bavarica dp. C	G 🛛	0		1	1		0	-		0		1		0			
Tvetenia paucunca		D)							2			1					
Zavrelimvia sp.	Р	1	1	0		1	- 0			1	1	1		1	1	7	
Culicidae	C I	i		ő			- 1			i		13		ò	<u> </u>		
Aedes sn	· .	, i		, i			-120			Ŭ	1						
Dividee	26	0		0			- 0			0	<u> </u>	++		0			
Diva en C		ŏ		, a						, i				2	⊢		
Dixella on	^{,0}	v								100		+		5	⊢ −− ⊦		
Empididae	- 8								1	10	—	+			<u> </u>		
Homorodromia en	- 10					+	-2			10		<u> </u>					
Dheheeleddee	- 8	1					-					<u> </u>			}		
Dittacomamba olavinon	- Ji			0		+	-			40				0			
Diffactoriorpha clavipes	- 10			U		+ +	-			10	<u> </u>			0			
Bittacomorpha sp.			6		<u> </u>					100	1	J			<u> </u>		
Prychoptera sp.					1		-					-			J		
Simulidae F	C	0		0			_ 0		22	0	<u> </u>			0			
Simulium sp. F	-C	0	1	0	1		0	1	2	0				1			
Syrphidae	- 11								[]	100		3					
Tabanidae 8	PI	0		0			0			0				0			
Chrysops sp.	PI	0	1	0			0	-		1				0			
Tipulidae S	SH 📗	0		0			0		1	0				0			
Dicranota sp.	- JH						-			1. m					1	1	
Ormosia sp.	- JI									101					1	1	
Pseudolimnophila sp.	р 📗	1	3 1	0	-	1	0		1	3	3	1		0	3		
Tipula sp. S	SH 📕	0	3 1	1		1	1 1	1		3	-			3	1	1	
the second s	-	1000					7. 12			TRI-	S			Seal of the seal of the	-		The lot of the
TOTAL NO. OF ORGANISMS		30	45 37 0	91	51	91 0	66	29	254 0	65	30	17	0	90	42	62	0
TOTAL NO. OF TAXA		16	20 17 0	27	18	17 0	26	12	35 0	27	18	3	0	26	21	17	ō
EPT TAXA		0	3 1 0	10	2	9 0	12	7	11 0	4	õ	ó	0	9	4	4	0
EPT ABUNDANCE		0	5 1 0	59	4	49 n	33	24	76 0	6	ō	ō	ō	49	6	38	ō
NO DIOTIC INDEX	- 8	6 640909	67 706	4.9476	19 6.8	6.1	5.071111	5.2	5.94	6.883333	8.8	IN/A	·····	4.617742	6.1	4 49	
	_																

APPENDIX D

INTEGRATED PROBLEM AREA PLAN VIEW

APPENDIX D.1 -

Monitoring and Problem Area Plan View, Reach 1

REVISIONS Rev. DESORPTION DATE APPL Image: Imag	Soil & Environmental Consultants, PA 11010 Raven Ridge Road • Raleigh, North Carolina 27614 • Phone: (919) 846-5900 • Fax: (919) 846-9467 www.SandEC.com	Project: GRAY FARM STREAM RESTORATION Project No.: 9385.D9 YEAR 3 MONITORING Proj. Mgr.: Drawn: DG DGC DGC Location: Client: NC ECOSYSTEM Scale: IREDELL CO., NC Client: NC ECOSYSTEM 1" = 50' Sheet Title: Sheet No.: Sheet No.: REACH I - MONITORING PLAN VIEW - D 5 OF I 6

		- KUDZU ENCROACHIMENT	
REVISIONS REV. DESCRIPTION DATE AFFR.		Project: GRAY FARM STREAM RESTORATION YEAR 3 MONITORING	^P roject No.: 9385.D9 ^P roj. Mgr.: Drawn:
	Soil & Environmental Consultants, PA 11010 Raven Ridge Road • Raleigh, North Carolina 27614 • Phone: (919) 846-5900 • Fax: (919) 846-9467 www.SandEC.com	Iccation: Client: NC ECOSYSTEM Strend Program IREDELL CO., NC ENHANCEMENT PROGRAM Sheet Title: Strend Program REACH I -PROBLEM AREA PLAN VIEW - A	bc bc bc bc bc bc bc bc

APPENDIX D.2 -

Monitoring and Problem Area Plan View, Reach 2

